!pip install -qq diffusers transformers scipy ftfy accelerateStable Diffusion Inference (high-level)
Create an image using Diffusers library.
Install and Import Libraries
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
device'cuda'
prompt = ["a photograph of an astronaut riding a horse"]
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(256) # Seed generator to create the inital latent noise
batch_size = 2from diffusers import LMSDiscreteScheduler, StableDiffusionPipeline
scheduler = LMSDiscreteScheduler.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="scheduler"
)
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", scheduler=scheduler
)pipeStableDiffusionPipeline {
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.20.2",
"_name_or_path": "CompVis/stable-diffusion-v1-4",
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"requires_safety_checker": true,
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"LMSDiscreteScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
pipe = pipe.to(device)High-level
pil_images = pipe(
prompt=prompt * batch_size,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
).imagesfor pil_image in pil_images:
display(pil_image)

References
- Patil et al. (2022) Stable Diffusion with ๐งจ Diffusers, https://huggingface.co/blog/stable_diffusion
-